MODULE DESCRIPTION FORM

Module Information						
Module Title	Programming Fundamentals I		Modu	Module Delivery		
Module Type	Core					
Module Code	IT104			Lecture		
ECTS Credits		7			Practical	
SWL (hr/sem)		175			1	
Module Level UG1		UG1	Semester of Delivery 1		1	
Administering Department		Information Technology	College of Science		cience	
Module Leader	Mohsin	Hassan Hussein	e-mail	mohsin.ha@uowa.edu.iq		wa.edu.iq
Module Leader's	Acad. Title	Assistant Professor	Module Leader's Qualification Ph.D		Ph.D.	
Module Tutor	Mohsen Hassan Hosein		e-mail	mohsin.ha@uowa.edu.iq		wa.edu.iq
Peer Reviewer Name		Asst.Prof Hyder Mohammed Ali	e-mail hayder.alghanami@uowa.edu		uowa.edu.iq	
Scientific Committee Approval Date		2024-11-01	Version Number V1		V1	

Relation with other Modules				
Prerequisite module	-	Semester	-	
Co-requisites module	-	Semester	-	

.1

SO COLL STORY

الله وارث الانبيرة من كان المعلومات المعلومات

Department Head Approval

Dean of the College Approval

Modu	le Aims, Learning Outcomes and Indicative Contents
Module Objectives	 The following are some key aims and benefits of studying Programming Fundamentals I: Introduction to Programming: Introduce students to the fundamental concepts of programming, including the role of programming languages, the software development process, and basic programming principles. Problem Solving: Teach students how to analyze problems and develop algorithms to solve them. Emphasize problem-solving techniques, algorithm design, and decomposition of complex problems into smaller, manageable parts. Input and Output: Teach students how to interact with the user and handle standard input/output operations, including reading from keyboard and display to screen. Programming Language Basics: Familiarize students with the syntax, semantics, and basic constructs of a programming language, such as variables, data types, control structures (loops, conditionals), and functions. Debugging and Testing: Teach students how to debug and test their programs to identify and fix errors. Explore techniques for error detection, debugging tools, and strategies for writing effective test cases
Module Learning Outcomes	 The following are some common learning outcomes for a Programming Fundamentals I: Knowledge of Programming Concepts: Demonstrate a solid understanding of fundamental programming concepts, including variables, data types, control structures, and basic algorithms. Problem Solving Skills: Apply problem-solving techniques to analyze and solve programming problems by decomposing them into smaller, manageable parts and designing appropriate algorithms. Proficiency in Programming Language: Develop proficiency in using a specific programming language covered in the course, including understanding the language's syntax, semantics, and basic constructs. Effective Code Writing: Write clear, well-structured, and readable code that follows coding standards and best practices, including proper indentation, meaningful variable names, and appropriate comments. Debugging and Testing Skills: Use debugging techniques and tools to identify and fix errors in programs. Develop effective test cases and perform testing to ensure program correctness and reliability.
Indicative Contents	The indicative contents of a Programming Fundamentals I module have a list of common topics that shown below: 1-Introduction to Programming: Role of programming languages, Software development process, Basic programming principles and concepts. [15 hrs.] 2-Problem Solving and Algorithm Design: Problem analysis and requirements specification, Algorithm design techniques (e.g., topdown design, stepwise refinement), Flowcharts and pseudocode. [20hrs] 3-Input and Output: standard input/output operations, including reading from keyboard and display to screen. [10 hrs.] 4- Programming Language Basics: Variables and data types, Operators and expressions, Control structures (loops, conditionals). [30 hrs.]

- 5- Modular Programming: Scope and lifetime of variables. [10 hrs.]
- 6-Debugging and Testing: Common types of programming errors, Debugging techniques and tools. [10 hrs.]

Learning and Teaching Strategies

To teach a Programming Fundamentals I module, various strategies can be employed to facilitate effective learning and engagement. Here are some learning and teaching strategies commonly used in Programming Fundamentals I module:

- 1- Lectures: Delivering lectures to present theoretical concepts, principles, and foundational knowledge of Programming Fundamentals I. Lectures can include visual aids, examples, and demonstrations to enhance understanding.
- 2- Interactive Discussions: Encourage students to actively participate in discussions by asking questions, sharing their thoughts, and engaging in peer-to-peer learning. Discussions can focus on challenging concepts, real-world applications, or case studies related to Programming Fundamentals I.
- 3- Hands-on Lab Sessions: Conduct practical lab sessions where students can gain hands-on experience with Programming Fundamentals I, 4 commands, and programming exercises. These sessions provide an opportunity to reinforce theoretical concepts and develop practical skills.
- 4- Group Projects: Assign group projects that involve designing, implementing, and evaluating components of Programming Fundamentals I. Group projects promote teamwork, problem-solving, and practical application of operating system concepts.
- 5- Online Resources and Tutorials: Provide access to online resources, tutorials, and interactive learning materials related to Programming Fundamentals I. This allows students to explore additional content, reinforce their understanding, and self-assess their progress.
- 6- Assessments and Feedback: Use a variety of assessment methods such as quizzes, assignments, projects, and exams to evaluate students' understanding of Programming Fundamentals I concepts. Provide timely and constructive feedback to help students improve their knowledge and skills.

Strategies

Student Workload (SWL)				
Structured SWL (h/sem) 75 Structured SWL (h/w) 6				

Unstructured SWL (h/sem)	97	Unstructured SWL (h/w)	5
Total SWL (h/sem)		172 + 3 (Final Exam)= 175	

Module Evaluation						
		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	5	5% (5)	3,5,7,9,11	LO #1, #3 and #4	
Formative	Home Work	5	10% (10)	2,4,6,8,10	LO #1, #3 and #4	
assessment	Lab	10	20% (20)	Continuous	All	
	Onsite Assignments	5	5% (5)		LO #5, #8 and #10	
Summative	Midterm Exam	2hr	10% (10)	9	LO #1, #2 and #3	
assessment	Final Exam	3hr	50% (50)	17	All	
Total assessment			100% (100 Marks)			

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Problem solving			
Week 2	Algorithms and flow charts			
Week 3	Introduction to programming Languages			
Week 4	Variables, Constants, keywords, types, operators, expression, assignment			
Week 5	Simple I/O Functions			
Week 6	Conditional Statements			
Week 7	If Statement			
Week 8	Nested If			
Week 9	Mid Exam			
Week 10	Switch Statement			
Week 11	Iterative control statements + for Statements			
Week 12	While Statement			
Week 13	Do while			
Week 14	Nested Loops			
Week 15	Nested while			
Week 16	Preparatory week before the final Exam			

Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered			
Week 1	IDE of Programming Language			
Week 2	Examples for Algorithms and flow charts			
Week 3	Using the IDE for writing sample of program			
Week 4	Programs by using Variables, Constants, keywords, types, operators, expression, assignment			
Week 5	Writing codes for 3 Programs Appling Simple I/O Functions			
Week 6	Simple Conditional Statements programs			
Week 7	Writing codes of If Statement programs			
Week 8	Writing codes of Nested If programs			
Week 9	Mid Exam			
Week 10	Writing codes of Switch Statement programs			
Week 11	Writing codes of Iterative control statements + for Statements programs			
Week 12	Writing codes of While Statement programs			
Week 13	Writing codes of Do while programs			
Week 14	Writing codes of Nested Loops programs			
Week 15	Writing codes of Nested while programs			

Learning and Teaching Resources				
	Text Available in the Library?			
Required Texts	C++: The Complete Reference, Fourth Edition, Herbert Schildt.	Yes		
Recommended Texts	The C++ Programming Language, Third Edition, Bjarne Stroustrup.	No		
Websites	https://stackoverflow.com/			

Grading Scheme					
Group	Grade	Marks	Marks %	Definition	
	A - Excellent	Excellent	90 - 100	Outstanding Performance	
6	B - Very Good	Very Good	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	Good	70 - 79	Sound work with notable errors	
	D - Satisfactory	Fair / Average	60 - 69	Fair but with major shortcomings	
	E - Sufficient	Pass / Acceptable	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	Fail (Pending)	(45-49)	More work required but credit awarded	
(0 – 49)	F – Fail	Fail	(0-44)	Considerable amount of work required	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.