MODULE DESCRIPTION FORM | Module Information | | | | | | | |------------------------------------|------------------------------|--------------------------------|----------------------------------|------------------------------|------|----------| | Module Title | Calculus I | | Modu | Module Delivery | | | | Module Type | Basic | | | - ⊠ Lecture | | | | Module Code | IT105 | | | | | | | ECTS Credits | 5 | | | | | | | SWL (hr/sem) | | 125 | | | | | | Module Level | | UG1 | Semester of Delivery 1 | | 1 | | | Administering Department | | Information
Technology | College | College of Science | | cience | | Module Leader | Saja | Bassem Ali | e-mail | Saja.b@uowa.edu.iq | | | | Module Leader's Acad. Title | | Assistant Lecturer | Module Leader's Qualification MS | | MS.C | | | Module Tutor | Tutor Saja Bassem Ali e-mail | | e-mail | Saja.b@uowa.edu.iq | | | | Peer Reviewer Name | | Asst. Lecturer
Nabeel Sadeq | e-mail | nabeel.alshreefy@uowa.edu.iq | | ı.edu.iq | | Scientific Committee Approval Date | | 2024-12-08 | Version Number 1.0 | | | | | Relation with other Modules | | | | | | |-----------------------------|---|----------|---|--|--| | Prerequisite module | - | Semester | - | | | | Co-requisites module | - | Semester | - | | | Po management of the state t الما المعلومات كالمعلومات **Department Head Approval** **Dean of the College Approval** | Module Aims, Learning Outcomes and Indicative Contents | | | | | | |--|--|--|--|--|--| | Module Objectives | 1-Understand the concept of the derivative of a function and its geometrical and mechanical significance. 2- Criticize the basic rules of differentiation and be able to apply them to find first and higher derivatives of functions. 3- Know the elementary properties of the trigonometric functions, the inverse trigonometric functions, the exponential and logarithmic functions. Be able to differentiate expressions involving these functions. 4- Know about critical points of differentiable functions and their use in determining maxima and minima. Be able to apply these ideas in simple problems in optimization. 5- State the different methods of integration and their applications. 6- Understand the essential mathematics relevant to computer science. 7- Demonstrate basic knowledge and understanding of a core of analysis, algebra, applied mathematics and statistics. | | | | | | Module Learning
Outcomes | Handle techniques of differentiation and integration in solving practical problems Use of standard numerical recipes and mathematical libraries in problem solving. Explore, and where feasible solve, mathematical problems, by selecting appropriate techniques. Evaluate systems in terms of general quality attributes and possible tradeoffs presented within the given problem. Prove and disprove assertions using a variety of techniques | | | | | | Indicative Contents | 1-Summarize the proposed solutions and their results. 2- Verifying solutions. 3- Observing results and attitudes. 4 - Setting goals towards solving traditional and non-traditional problems. 5- Defining problems in precise scientific way. 6- Restrict solution methodologies upon their results. 7- Identify a range of solutions and critically evaluate and justify proposed design Solutions. 8- Criticize the methods of differentiation and integration. | | | | | | Learning and Teaching Strategies | | | | | | |----------------------------------|---|--|--|--|--| | Strategies | Manage time effectively. Present a clear, logical argument. Work independently. d4- Solve practical problems in course projects. Speeding up the computation of conventional mathematical problems such as sorting, recursion, and matrix multiplication. The ability to evaluate systems in terms of general and specific quality attributes. Work within and contribute to a team, apply management skills such as coordination, project design and evaluation and decision processes. | | | | | | Student Workload (SWL) | | | | | | |--------------------------|---------------------------------|--|--|--|--| | Structured SWL (h/sem) | /sem) 45 Structured SWL (h/w) 4 | | | | | | Unstructured SWL (h/sem) | 74 Unstructured SWL (h/w) 5 | | | | | | Total SWL (h/sem) | 122 + 3 (Final Exam) = 125 | | | | | | Module Evaluation | | | | | | | |-------------------|--------------|----------------------------|------------------|-------------------|---------|--| | | | Time/Number Weight (Marks) | Week Due | Relevant Learning | | | | | | | | | Outcome | | | | Quizzes | 3 | 10% (10) | 3,6 and 9 | 1,2,3,4 | | | Formative | Assignments | 2 | 5% (5) | 4, 12 | 1,2,3,4 | | | assessment | H. W | 5 | 10% (10) | 2,4,6,8,10 | 1,2,3,4 | | | | Attendance | 1 | 10% (10) | Continues | 1,2,3,4 | | | Summative | Midterm Exam | 2hr | 15% (15) | 5,11 | | | | assessment | Final Exam | 3hr | 50% (50) | 16 | | | | Total assessme | ent | | 100% (100 Marks) | | | | | Delivery Plan (Weekly Syllabus) | | | | |---------------------------------|--|--|--| | | Material Covered | | | | Week 1 | Numbers and Sets. Representations of Functions. | | | | Week 2 | Domain; Codomain; Range of Functions. Test for Even and Odd Functions. | | | | Week 3 | Types of Functions and their Graphs. | | | | Week 4 | Definition of Limit. | | | | Week 5 | Finding Limits Graphically and Numerically | | | | Week 6 | Limit Laws | | | | Week 7 | One-Sided Limits | | | | Week 8 | Infinite Limits | | | | Week 9 | Continuity | | | | Week 10 | Introduction to Differentiation | | | | Week 11 | The Derivative of a Function | | | | Week 12 | Differentiability and Continuity | | | | Week 13 | basic derivative theorems | | | | Week 14 | Implicit Differentiation | | | | Week 15 | Applications of Differentiation | | | | Week 16 | Preparatory week before the final Exam | | | | Learning and Teaching Resources | | | | | |---------------------------------|--|---------------------------|--|--| | | Text | Available in the Library? | | | | Poguired Toyts | 1. Calculus. Thomas. book | Yes | | | | Required Texts | 2. Calculus I. Paul Dawkins book | | | | | Recommended | Ron Larson and Bruce Edwards | | | | | Texts | 11 Edition No | | | | | Websites | https://tutorial.math.lamar.edu/Classes/CalcI/CalcI.aspx | | | | | Grading Scheme | | | | | | | |-----------------------------|-------------------------|-------------------|----------|---------------------------------------|--|--| | Group | Grade | Mark | Marks % | Definition | | | | | A - Excellent | Excellent | 90 - 100 | Outstanding Performance | | | | 6 | B - Very Good | Very Good | 80 - 89 | Above average with some errors | | | | Success Group
(50 - 100) | C - Good | Good | 70 - 79 | Sound work with notable errors | | | | | D - Satisfactory | Fair / Average | 60 - 69 | Fair but with major shortcomings | | | | | E - Sufficient | Pass / Acceptable | 50 - 59 | Work meets minimum criteria | | | | Fail Group | FX – Fail | Fail (Pending) | (45-49) | More work required but credit awarded | | | | (0 – 49) | F – Fail | Fail | (0-44) | Considerable amount of work required | | | | | | | | | | | **Note:** Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.