MODULE DESCRIPTOR FORM

Module Information							
Module Title		Calculus 2			Module Delivery		
Module Type		BASIC					
Module Code		IT1211			Theory ✓		
ECTS Credits		6			Seminar ✓ Lecture ✓		Seminar ✓ Lecture ✓
SWL (hr/sem)	150				Lecture V		
Module Lo	Module Level		Semester of Delivery		ivery		2
Administering D	Administering Department		College	College of Sciences		f Sciences	
Module Leader	Saja Bassem Ali		e-mail		Saja.b@uowa.edu.iq		owa.edu.iq
Module Leader's Acad. Title		assistant Lecturer	Module Leader's Qualification		s		MSC
Module Tutor	Saja Bassem Ali		e-mail	Saja.b@uowa.edu.iq		owa.edu.iq	
Peer Reviewer	· name	Lecturer Maky H.Abdulraheem	e-mail	maky.h@uowa.edu.iq		owa.edu.iq	
Review Comn Approval		2024-1-20	Version 1	Number 1.0		1.0	

Relation With Other Modules						
Prerequisite module	Semester	1				
Co-requisites module	Calculus1	Semester	1			

Police Line Color

Department Head Approval

c. co/2.cs

Dean of the College Approval

Modul	e Aims, Learning Outcomes and Indicative Contents
	1-Understand the concept of the derivative of a function and its geometrical and mechanical significance.
	2- Criticize the basic rules of differentiation and be able to apply them to find first and higher derivatives of functions.
Module Aims	3- Know the elementary properties of the trigonometric functions, the inverse trigonometric functions, the exponential and logarithmic functions. Be able to differentiate expressions involving these functions.
	4- Know about critical points of differentiable functions and their use in determining maxima and minima. Be able to apply these ideas in simple problems in optimization.
	5- State the different methods of integration and their applications.
	6- Understand the essential mathematics relevant to computer science.
	7- Demonstrate basic knowledge and understanding of a core of analysis, algebra,
	applied mathematics and statistics.
	1- Handle techniques of differentiation and integration in solving practical
	problems
	2- Use of standard numerical recipes and mathematical libraries in problem
Module Learning Outcomes	solving. 3-Explore, and where feasible solve, mathematical problems, by selecting
Outcomes	appropriate techniques.
	4- Evaluate systems in terms of general quality attributes and possible tradeoffs presented within the given problem.
	5- Prove and disprove assertions using a variety of techniques
	1-Summarize the proposed solutions and their results.
	2- Verifying solutions.
	3- Observing results and attitudes.
Indicative Contents	4 - Setting goals towards solving traditional and non-traditional problems.
	5- Defining problems in precise scientific way.
	 6- Restrict solution methodologies upon their results. 7- Identify a range of solutions and critically evaluate and justify proposed design
	solutions
	8- Criticize the methods of differentiation and integration
	1

Learning and Teaching Strategies				
Strategies	1-Manage time effectively. 2 Present a clear, logical argument.			

- 3-- Work independently. d4- Solve practical problems in course projects.
- 4-- Speeding up the computation of conventional mathematical problems as sorting, recursion, and matrix multiplication.
- 5-- The ability to evaluate systems in terms of general and specific quality attributes.
- 6-- Work within and contribute to a team, apply management skills such as coordination, project design and evaluation and decision processes

Student Workload (SWL)					
Structured SWL (h/sem)	60 Structured SWL (h/w) 4				
Unstructured SWL (h/sem)	87	Unstructured SWL (h/w)	6		
Total SWL (h/sem)	147+3 final				

Module Evaluation							
	Time/Nu mber Weight (Marks) Week Due Relevant Learning Outcome						
	Quizzes	5	4% (20)	1,2,3,4	2,5,7,8,9		
Formative	Assignments	2	5% (6)	6,11	All Outcome		
assessment	H.W	3	2% (6)	2,4,9,10	All Outcome		
	Report	5	10% (10)	5,12	All Outcome		
Summative	Midterm Exam	2hr	15% (15)	5,11			
assessment	Final Exam	3hr	50% (50)	16			
	Total assessment 100% (100 Marks)						

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Antiderivatives.			
Week 2	Indefinite Integrals.			
Week 3	Basic Integration Rules.			
Week 4	Integration by Substitution.			
Week 5	Integration by Parts.			
Week 6	trigonometric integrals			
Week 7	Areas Between Curves			
Week 8	Areas in rectangular coordinates			
Week 9	Double Integrals			
Week 10	Double Integrals over Rectangles			
Week 11	Application of integrals			
Week 12	Triple integrals (Volume)			
Week 13	Area between two curves			
Week 14	Odd and even powers of sine and cosine			
Week 15	Odd and even powers of sine and cosine			
Week 16	Preparatory week before the final Exam			

Learning and Teaching Resources					
	Text	Available in the Library?			
Required Texts	Calculus. Thomas. book Calculus I .Paul Dawkins book	yes			
Recommended Texts	Ron Larson and Bruce Edwards 11 Edition	no			
Websites	https://tutorial.math.lamar.edu/Classes/CalcI/C	alcI.aspx			

APPENDIX:

	GRADING SCHEME						
Group	Grade	Mark	Marks (%)	Definition			
	A - Excellent	Excellent	90 - 100	Outstanding Performance			
Success Group (50 - 100)	B - Very Good	Very Good	80 - 89	Above average with some errors			
	C - Good	Good	70 - 79	Sound work with notable errors			
	D - Satisfactory	Fair / Average	60 - 69	Fair but with major shortcomings			
	E - Sufficient	Pass / Acceptable	50 - 59	Work meets minimum criteria			
Fail Group	FX – Fail	Fail (Pending)	(45-49)	More work required but credit awarded			
(0 - 49)	F – Fail	Fail	(0-44)	Considerable amount of work required			
	Note:			·			

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

ملاحظة: هذا النموذج تم وضعه وتقديمه من قبل مديرية ضمان الجودة في وزارة التعليم العالى والبحث العلمي