
1

MODULE DESCRIPTION FORM

Module Information

Module Title Programming Fundamentals II Module Delivery

Module Type Core

 ☒ Lecture

☒ Practical

Module Code IT203

ECTS Credits 7

SWL (hr/sem) 175

Module Level UGI Semester of Delivery 2

Administering Department
Information

Technology
College Science

Module Leader Mohsin Hasan Hussein e-mail mohsin.h@uokerbala.edu.iq

Module Leader’s Acad. Title Assistant Prof. Module Leader’s Qualification Ph.D.

Module Tutor
Assistant Prof. Dr. Mohsin Hasan

Hussein
 e-mail

mohsin.h@uokerbala.edu.iq

Peer Reviewer Name
Assist. Prof. Dr.

Haider Mohammed
 e-mail hayder.alghanami@uowa.edu.iq

Scientific Committee Approval

Date
2024-1-20 Version Number V1

 Relation with other Modules

Prerequisite module Programming Fundamentals 2 Semester 1

Co-requisites module - Semester …

Dean of the College Approval Department Head Approval

mailto:hayder.alghanami@uowa.edu.iq

2

Module Aims, Learning Outcomes and Indicative Contents

Module Objectives

The following are some key aims and benefits of studying Programming Fundamentals

II:

1. Problem Solving: Teach students how to analyze problems and develop algorithms
to solve them. Emphasize problem-solving techniques, algorithm design, and
decomposition of complex problems into smaller, manageable parts.

2. Debugging and Testing: Teach students how to debug and test their programs to
identify and fix errors. Explore techniques for error detection, debugging tools,
and strategies for writing effective test cases.

3. Data Structures: Introduce students to fundamental data structures such as
arrays, stacks, queues, structures. Explore their properties, implementation, and
usage in solving programming problems.

4. Modular Programming: Introduce the concept of modular programming,
including the use of functions, parameter passing, and code reuse. Emphasize the
importance of modular design and writing reusable and maintainable code.

5. Programming Best Practices: Introduce students to programming best practices
and coding standards, including code documentation, naming conventions, code
formatting, and code optimization techniques.

6. Files Input and Output: Teach students how to interact with the user and handle
input/output operations, including reading from and writing to files, standard
input/output, and error handling.

7. Introduction to Object-Oriented Programming (OOP): Introduce the principles
and concepts of OOP, including classes.

3

Module Learning

Outcomes

The following are some common learning outcomes for an Programming

Fundamentals II :

1. Effective Code Writing: Write clear, well-structured, and readable code that
follows coding standards and best practices, including proper indentation,
meaningful variable names, and appropriate comments.

2. Use of Data Structures: Apply appropriate data structures, such as arrays, linked
lists, stacks, and queues, to store and manipulate data effectively in programming
problems.

3. Modular Design and Reusability: Design and implement modular programs by
breaking them into reusable functions or methods, facilitating code reuse,
improving maintainability, and promoting good software engineering practices.

4. Debugging and Testing Skills: Use debugging techniques and tools to identify and
fix errors in programs. Develop effective test cases and perform testing to ensure
program correctness and reliability.

5. Understanding of Object-Oriented Programming (OOP) Concepts.

Indicative

Contents

The indicative contents of an Programming Fundamentals II module have a list of

common topics that shown below :

1- Modular Programming: [25 hrs]

Functions and procedures, Scope and lifetime of variables, Parameter passing

mechanisms.

2- Data Structures: [25 hrs]

Arrays, Strings and lists, Structures, Stacks and queues.

3- Input and Output: [15 hrs]

Standard input/output, Reading from and writing to files, Error handling and

exception handling.

4- Debugging and Testing: Common types of programming errors, Debugging

techniques and tools. [20 hrs]

5- Object-Oriented Programming (OOP) Concepts: Classes and objects. [5

hrs]

4

 Learning and Teaching Strategies

Strategies

To teaching an Programming Fundamentals II module, various strategies can

be employed to facilitate effective learning and engagement. Here are some

learning and teaching strategies commonly used in Programming

Fundamentals II module:

1- Lectures: Delivering lectures to present theoretical concepts, principles,

and foundational knowledge of Programming Fundamentals II. Lectures

can include visual aids, examples, and demonstrations to enhance

understanding.

2- Interactive Discussions: Encourage students to actively participate in

discussions by asking questions, sharing their thoughts, and engaging in

peer-to-peer learning. Discussions can focus on challenging concepts,

real-world applications, or case studies related to Programming

Fundamentals II.

3- Hands-on Lab Sessions: Conduct practical lab sessions where students

can gain hands-on experience with Programming Fundamentals II,

commands, and programming exercises. These sessions provide an

opportunity to reinforce theoretical concepts and develop practical skills.

4- Group Projects: Assign group projects that involve designing,

implementing, and evaluating components of an Programming

Fundamentals II. Group projects promote teamwork, problem-solving,

and practical application of operating system concepts.

5- Online Resources and Tutorials: Provide access to online resources,

tutorials, and interactive learning materials related to Programming

Fundamentals II. This allows students to explore additional content,

reinforce their understanding, and self-assess their progress.

6- Assessments and Feedback: Use a variety of assessment methods such as

quizzes, assignments, projects, and exams to evaluate students'

understanding of Programming Fundamentals II concepts. Provide timely

and constructive feedback to help students improve their knowledge and

skills.

5

 Student Workload (SWL)

 Structured SWL (h/sem)
75

Structured SWL (h/w)

5

Unstructured SWL (h/sem)

97

Unstructured SWL (h/w)

6.5

Total SWL (h/sem)

 172 + 3 final = 175

 Module Evaluation

 Time/Numb

er
Weight (Marks) Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes
5 1% (5) All Weeks 1,2,3,4

Assignments 5 1%(5) All Weeks All Outcome

Lab 5 4% (20) All Weeks All Outcome

Home Work 5 2%(10) All Weeks All Outcome

Summative

assessment

Midterm Exam 2hr 10%(10) 9

Final Exam 3hr 50% (50) 17

Total assessment 100% (100 Marks)

 Delivery Plan (Weekly Syllabus)

 Material Covered

Week 1 Functions

Week 2 Function Types

Week 3 The concept of Recursion

Week 4 Array

Week 5 1D array

6

Week 6 2D array (Matrix)

Week 7 Array of Characters (Strings)

Week 8 String Processing

Week 9 Midterm Exam

Week 10 Arrays and functions

Week 11 Structures

Week 12 Array of structures and Nested Structures

Week 13 Stack and Queue

Week 14 Pointers

Week 15 Files

Week 16 Preparatory week before the final Exam

 Delivery Plan (Weekly Lab. Syllabus)

 Material Covered

Week 1 Writing Codes using Functions

Week 2 Writing Codes using Function Types

Week 3 Writing Codes using The concept of Recursion

Week 4 Writing Codes using Arrays

Week 5 Writing Codes using 1D arrays

Week 6 Writing Codes using 2D array (Matrix)s

Week 7 Writing Codes using Array of Characters (Strings)

Week 8 Writing Codes using String Processing

Week 9 Midterm Exam

Week 10 Writing Codes using Arrays and functions

Week 11 Writing Codes using Structures

Week 12 Writing Codes using Array of structures and Nested Structures

Week 13 Writing Codes using Stack and Queue

7

Week 14 Pointers

Week 15 Files

 Learning and Teaching Resources

 Text Available in the Library?

Required Texts
C++: The Complete Reference, Fourth Edition, Herbert

Schildt. Yes

Recommended

Texts

The C++ Programming Language , Third Edition , Bjarne

Stroustrup. Yes

Websites https://stackoverflow.com/

 Grading Scheme

Group Grade Mark Marks % Definition

Success Group

(50 - 100)

A - Excellent Excellent 90 - 100 Outstanding Performance

B - Very Good Very Good 80 - 89 Above average with some errors

C - Good Good 70 - 79 Sound work with notable errors

D - Satisfactory Fair / Average 60 - 69 Fair but with major shortcomings

E - Sufficient Pass / Acceptable 50 - 59 Work meets minimum criteria

Fail Group (0

– 49)

FX – Fail Fail (Pending) (45-49) More work required but credit awarded

F – Fail Fail (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark

of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to

condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic

rounding outlined above.

