MODULE DESCRIPTION FORM | Module Information | | | | | | | |------------------------------------|-------------------------------------|---------------------------|-------------------------------------|----------------------|-----------------|--| | Module Title | Probability & Statistics | | es . | Modu | Module Delivery | | | Module Type | | Basic | | | | | | Module Code | IT2105 | | | | ■ Lecture | | | ECTS Credits | 4 | | | | | | | SWL (hr/sem) | | 100 | | | | | | Module Level | | UG2 | Semester of Delivery 1 | | 1 | | | Administering Department | | Information Technology | College | College of Science | | | | Module Leader | Ahmed Yahya Awad e-mail | | ahmed.ya@uowa.edu.iq | | | | | Module Leader's Acad. Title | | Lecturer | Module Leader's Qualification Ph.D. | | Ph.D. | | | Module Tutor | 1odule Tutor Ahmed Yahya Awad e- | | e-mail | ahmed.ya@uowa.edu.iq | | | | Peer Reviewer Name | | Dr. Maky
H.Abdulraheem | e-mail maky.h@uowa.edu.iq | | | | | Scientific Committee Approval Date | | 2024-09-17 | Version N | umber | V1.0 | | | Relation with other Modules | | | | | | | |--------------------------------------|------|----------|------|--|--|--| | Prerequisite module None Semester No | | | | | | | | Co-requisites module | None | Semester | None | | | | A COLUMN TO BE SEED OF THE SEE المحامدة وارث الانساس المحادمات المعادمات **Department Head Approval** **Dean of the College Approval** | Modu | lle Aims, Learning Outcomes and Indicative Contents | | | |-----------------------------|--|--|--| | Module Aims | This module will provide students with a basic knowledge of mathematical probability theory and the techniques of statistical inference that are used for analyzing data. Also, this module will provide students a foundation for further modules in statistics and applied probability. Understanding the most important principles of statistics and statistical methods for representing data, as well as knowing the types of coefficients statistics, their importance and methods of calculation. Understanding the most important principles of probability and the most important operations that take place on the aggregates and knowing what most important properties of probability. | | | | Module Learning
Outcomes | On successful completion of this module, a student will be able to: 1- Model simple experiments using probability theory. 2- Perform standard probability calculations. 3- Work with independent and correlated random variables. 4- Correctly apply simple formal statistical techniques and interpret the results. 5- Assess, analyses and interpret basic statistical problems. 6- Discern when statistics are being misused. 7- Present results of basic statistical analyses (both descriptive and inferential). 8- Apply simple probabilistic and statistical concepts. 9- Construct and apply mathematical descriptions of probability distributions. | | | | Indicative Contents | 1. Introduction to Probability Theory Basic concepts of probability: sample spaces, events, and probability axioms. Combinatorial principles and counting techniques. Conditional probability and independence. Discrete and continuous probability distributions. Expected value, variance, and moment-generating functions. Statistical Data Representation Data types: qualitative and quantitative. Graphical representation of data: histograms, bar charts, and pie charts. Measures of central tendency: mean, median, and mode. Measures of dispersion: range, variance, and standard deviation. Exploratory data analysis techniques. Statistical Inference Sampling techniques and sampling distributions. Point estimation: methods for estimating population parameters. Interval estimation: construction of confidence intervals. Hypothesis testing: formulation of null and alternative hypotheses, test statistics, and p-values. | | | | 4. | Probability Distributions | | |----|----------------------------------|--| | | | | - Binomial, Poisson, and normal distributions: properties and applications. - Central Limit Theorem and its significance. - o Transformations of random variables. - Joint probability distributions and independence. - Multivariate distributions: covariance, correlation, and regression. ## 5. Statistical Methods and Techniques - Regression analysis: simple linear regression and multiple regression. - Analysis of variance (ANOVA): one-way and two-way ANOVA. - Nonparametric methods: rank tests and chi-square tests. - Experimental design and sampling strategies. - Data collection, validation, and interpretation. ## 6. Foundations for Further Study in Statistics and Applied Probability - Bridging concepts and techniques for more advanced statistical modules. - Connecting probability theory and statistical inference to realworld applications. - Understanding the importance of statistical methods in decisionmaking and research. ## Learning and Teaching Strategies 1- Giving weekly lecture/tutorial sessions. 2- Printed notes will be given for each part of the course. 3- Concepts and underlying theories will be explored in the lecture period. 4- Students will learn through a formative process of tackling the exercises at the end of each section, with feedback and extension in tutorials. 5- Scientific discussions and dialogues and asking questions. | Student Workload (SWL) | | | | | | |--------------------------|--------------------|------------------------|-----|--|--| | Structured SWL (h/sem) | 45 | Structured SWL (h/w) | 3 | | | | Unstructured SWL (h/sem) | 52 | Unstructured SWL (h/w) | 3.5 | | | | Total SWL (h/sem) | 97 + 3 final = 100 | | | | | | Module Evaluation | | | | | | | |----------------------|-----------------------|-------------|------------------|-------------|---------------------------|--| | | | Time/Number | Weight (Marks) | Week Due | Relevant Learning Outcome | | | | Quizzes | 5 | 10% (10) | 3,6,9 | 1,2,3,4 | | | Formative assessment | Onsite
Assignments | 5 | 10% (10) | 2,4,6,10,12 | All | | | ussessment | H.W | 5 | 10% (10) | 2,4,6,8,10 | All | | | | Report | 1 | 10% (10) | 12 | All | | | Summative assessment | Midterm
Exam | 2hr | 10% (10) | 5,11 | | | | | Final Exam | 3hr | 50% (50) | 16 | | | | Total assessment | | | 100% (100 Marks) | | | | | Delivery Plan (Weekly Syllabus) | | | | | |---------------------------------|---|--|--|--| | | | | | | | | Material Covered | | | | | Week 1 | Probability (Sample Space, Events, Probability of an Event) | | | | | Week 2 | Probability (Additive Rules, Independence, Product Rule) | | | | | Week 3 | Conditional Probability | | | | | Week 4 | Total Probability Rule. | | | | | Week 5 | Bayes' Rule. | | | | | Week 6 | Discrete and Continuous Random Variable. | | | | | Week 7 | Probability Density Functions. | | | | | Week 8 | Joint Probability Distributions. | | | | | Week 9 | Probability Mass Functions. | | | | | Week 10 | Cumulative Distribution Functions. | | | | | Week 11 | Statistics Basics | | | | | Week 12 | Frequency Distributions | | | | | Week 13 | Measures of Central Tendency | | | | | Week 14 | Discrete Uniform Distribution. | | | | | Week 15 | Measures of Dispersion | | | | | Learning and Teaching Resources | | | | | |---------------------------------|---|---------------------------|--|--| | | Text | Available in the Library? | | | | Required Texts | An introduction to probability and statistics. (R1) Introduction to Statistics. (R2) | | | | | Grading Scheme | | | | | | | |-----------------------------|-------------------------|-------------------|-----------|---------------------------------------|--|--| | Group | Grade | Mark | Marks (%) | Definition | | | | | A - Excellent | Excellent | 90 - 100 | Outstanding Performance | | | | Success Group
(50 - 100) | B - Very Good | Very Good | 80 - 89 | Above average with some errors | | | | | C - Good | Good | 70 - 79 | Sound work with notable errors | | | | | D - Satisfactory | Fair / Average | 60 - 69 | Fair but with major shortcomings | | | | | E - Sufficient | Pass / Acceptable | 50 - 59 | Work meets minimum criteria | | | | Fail Group | FX – Fail | Fail (Pending) | (45-49) | More work required but credit awarded | | | | (0 – 49) | F – Fail | Fail | (0-44) | Considerable amount of work required | | | | | | | | | | | **Note:** Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.