
1

MODULE DESCRIPTION FORM

Module Information

Module Title Object-Oriented Programming II Module Delivery

Module Type Core ☒ Lecture

☒ Practical Module Code IT2202

ECTS Credits 6

SWL (hr/sem) 150

Module Level UG2 Semester of Delivery 2

Administering Department
Information
Technology

College
College Science

Module Leader Mohsin Hassan Hussein e-mail mohsin.ha@uowa.edu.iq

Module Leader’s Acad. Title Asst. Professor Module Leader’s Qualification Ph.D.

Module Tutor Mohsen Hassan Hussein e-mail mohsin.ha@uowa.edu.iq

Peer Reviewer Name Asst. Prof Haider

Mohammed
e-mail hayder.alghanami@uowa.edu.iq

Scientific Committee
Approval Date

20-01-2025
Version
Number

1.0

Relation with other Modules

Pre-requisite module Object-Oriented Programming 1 Semester 1

Co-requisites module - Semester

Dean of the College Approval Department Head Approval

mailto:meeras.s@uokerbala.edu.iq
mailto:meeras.s@uokerbala.edu.iq
mailto:hayder.alghanami@uowa.edu.iq

2

Module Aims, Learning Outcomes and Indicative Contents

Module Aims

1. Provide a sound knowledge of the underlying principles and experience in the

practical application of this course is essential for any information technology

specialist.

2. extend students with procedural programming knowledge and skills in the object-

oriented paradigm and builds experience with interpreted languages to introduce

compiled languages.

3. In addition to further shaping a solid development methodology, the course
prepares students for continued investigation into advanced programming topics.

4. develop a wide range of software solutions for real-world scenarios.

Module Learning
Outcomes

On completion of this course students will be able to:
1. Compare and contrast interpreted vs compiled languages; and prototype-based

vs class-based languages;
2. Competently apply the concepts of polymorphism, inheritance, encapsulation,

exception handling, memory management, threads, and file I/O;
3. Design, code, verify, test, document, amend and refactor moderately complex

programs meeting requirements by applying object-oriented principles;
4. Contribute to reviews of own work with others through the use of collaborative

tools.
5. develop programs using the C++ Standard for real-world.

Indicative Contents

1.

Topics
Description Weighting (75%)

Compiled languages; imperative programming
versus object orientation 5.00

2. Objects and classes 10.00

3. Inheritance 15.00

4. Polymorphism 15.00

5. Templates functions and classes 15.00

6. Exception handling 15.00

Learning and Teaching Strategies

Strategies

Overview Strategies
Object-oriented programming is one of the principle paradigms in software development used
by organisations worldwide to develop a wide range of software solutions. Sound knowledge of
the underlying principles and experience in the practical application of these is essential for any
information technology specialist. This intermediate programming course extends students’
procedural programming knowledge and skills into the object-oriented paradigm and builds on
previous experience with interpreted languages to introduce compiled languages. In addition to
further shaping a solid development methodology, the course prepares students for continued
investigation into advanced programming topics.

This course extends the student's basic procedural design and programming knowledge into the
object-oriented paradigm. The student will be expected to learn and apply the basic concepts of
object-oriented design and programming, i.e., abstraction, inheritance, and polymorphism, in the
context of the C++ language through giving lectures, practical exercises within the laboratories,
assignments about some specific topics, and small projects.. Key software engineering principles
such as decomposition and component re-use will also be emphasised.

3

Student Workload (SWL)

Structured SWL (h/sem)

75

Structured SWL (h/w)

5

Unstructured SWL (h/sem)

72

Unstructured SWL (h/w)

4.8

Student workload expectations (SWL &USWL)

To do well in this subject, students are expected to commit approximately 10 hours per week including class
contact hours, independent study, and all assessment tasks. If you are undertaking additional activities, the
weekly workload hours may vary.

Total SWL (h/sem)

147 + 3 final = 150

Module Evaluation

 Time/

Number
Weight (Marks) Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes 5 10% (8) All Weeks 1,2,3,4,5

Onsite
Assignments

5 10% (5) All Weeks 1,2,3,4,5

Home Work 5 10% (7) All Weeks 1,2,3,4,5

Project 1 10% (5) All Weeks 1,2,3,4,5

Labs 5 10% (15) All Weeks 1,2,3,4,5

Summative

assessment

Midterm Exam 2hr 10% (10) 7

Final Exam 3hr 50% (50) 16

Total assessment 100% (100 Marks)

4

Delivery Plan (Weekly Syllabus)

Material Covered

Weighting
(30+5=35%)

Week 1

- The fundamental concepts of programming, including procedural and

object-oriented programming will be introduced. Also, consider the

basic principles behind object-oriented programming techniques,

including objects, classes, inheritance, and polymorphism. Then you

will get started in programming environment by applying what you

have learned.

2

Week 2
- Introduction about objects and classes, class declaration, Object

declaration, with examples.
2

Week 3

Inheritance
- Base-Class Access Control
- Inheritance and protected Members
- Protected Base-Class Inheritance
- Inheriting Multiple Base Classes

2

Week 4

Inheritance …cont’d
- Constructors, Destructors, and Inheritance
- When Constructor and Destructor Functions Are Executed
- Passing Parameters to Base-Class Constructors

2

Week 5

Polymorphism

- Virtual Functions

- A pointer of base class type

- Virtual Base Classes

- Calling a Virtual Function Through a Base Class Reference

2

Week 6

Polymorphism …cont’d

- The Virtual Attribute Is Inherited
- Virtual Functions Are Hierarchical
- Pure Virtual Functions
- Abstract Classes

2

Week 7 Mid-Term Exam Revision 2

Week 8

Templates
- Generic Function
- A Simple Function Template
- A function with two generic types
- What the Compiler Does

2

Week 9

Templates … cont’d
- Overloading a Function Template
- Using Standard Parameters with Template Functions
- Template Arguments Must Match

2

Week 10

Templates …cont’d
- Function Templates with Multiple Arguments
- Template Arguments Must Match
- Syntax Variation
- Class Templates
- An Example with Two Generic Data Types

2

Week 11
Handling Exceptions

- Exceptions
- Why Do We Need Exceptions?

2

5

 - Exceptions Syntax
- Exception Mechanism
- Throwing Exceptions
- Catch Base and Derived classes with Exceptions

Week 12

Handling Exceptions…cont’d
- Constructor and Destructor with Exceptions
- Re-thrown Exceptions
- Nested Exceptions
- Handling Exceptions Class Activities

2

Week 13

Handling Exceptions…cont’d
- Handling Exceptions inside Function
- Catching All Exception
- Restricting Exceptions

2

Week 14

Handling Exceptions…cont’d
- Using Threw()-To Restric any types of Exceptions
- Re-thrown Exception inside function
- Handling Exceptions Class Activities

2

Week 15 - Students course workload evaluation. 2

Week 16 Prepare to the final Exam 3

Delivery Plan (Weekly Lab. Syllabus)

 Material Covered Weighting (45%)

Week 1 - Lab 1

- Prepare OOP environment, overview about unified

modeling language (UML) diagram.

- Access to a standard C++ or Python compiler

- Linux g++ compiler and its equivalent MinGW running

under windows.

3

Week 2 - Lab 2

Introduction to Classes and Objects

- Understand function call by value method of parameter

passing

- Understand Pass parameters by reference method

3

Week 3 - Lab 3

Apply Inheritance concept using many programming
codes include:

- Base-Class Access Control
- Inheritance and protected Members
- Protected Base-Class Inheritance
- Inheriting Multiple Base Classes

3

Week 4 – Lab 4
- Implement inheritance concept using Constructors,

Destructors Functions and learn how to Pass Parameters
to Base-Class Constructors.

3

Week 5 – Lab 5

Implement the Polymorphism concept using many

C++ code examples which include:
- Implement Virtual Functions

- Use A pointer of base class type

- Implement Virtual Base Classes

- Calling a Virtual Function Through a Base Class Reference

3

Week 6 – Lab 6 - Implement the Virtual Attribute and Virtual Functions 3

6

 - Implement Pure Virtual Functions
- Implement Abstract Classes

Week 7 – Lab 7 - Labs exam1 with evaluation 3

Week 8 – Lab 8

Implemented the Template concept using many
examples code in C++:

- Understand the Generic Function
- Implement A Simple Function Template
- Implement function template with two generic types

3

Week 9 – Lab 9

- Implement Overloading a Function Template
- Implement Using Standard Parameters with Template

Functions
- Prove the Template Arguments Must be Match

3

Week 10 – Lab 10

Code examples to implement:
- Function Templates with Multiple Arguments
- Class Templates
- Template with Two Generic Data Types

3

Week 11 – Lab 11

Implemented the Handling Exception concept
- Basic code exception
- How can Throw Exceptions
- Catch Base and Derived classes with Exceptions

examples

3

Week 12 – Lab 12

Code examples to implement:
- Constructor and Destructor with Exceptions
- Re-thrown Exceptions
- Nested Exceptions

3

Week 13 – Lab 13 - Labs exam2 with evaluation 3

Week 14 – Lab 14

- Code example to implement Exceptions inside Function
- How to Catch All Exception?
- How can Restrict Exceptions?

3

Week 15 – Lab 15
- OOP II project Implementation with discussion for each

student 3

Learning and Teaching Resources

Text

Available in the
Library?

Required Texts

1. Malik, D.S 2018, C++ Programming: Program Design

Including Data Structures, 8th edn, Cengage.

(ISBN 978-1-337-11756-2.)

2. OOP – Learn Object Oriented Thinking and Programming,

ISBN-10: 8090466184, Tomas Bruckner, 2013.

3. The student must have access to a standard C++ compiler.

The only supported compilers are the Linux g++ compiler

and its equivalent MinGW running under Windows.

No

7

Recommended
Texts

4. Object-Oriented Programming Using C++ Fourth Edition

by Joyce Farrell No

Websites

Grading Scheme

Group
Grade

Mark Marks
(%)

Definition

Success
Group
(50 - 100)

A - Excellent Excellent 90 - 100 Outstanding Performance

B - Very Good Very Good 80 - 89 Above average with some errors

C - Good Good 70 - 79 Sound work with notable errors

D -
Satisfactory Fair / Average

60 - 69 Fair but with major shortcomings

E - Sufficient Pass / Acceptable 50 - 59 Work meets minimum criteria

Fail Group
(0 – 49)

FX – Fail
Fail (Pending)

(45-49)
More work required but credit
awarded

F – Fail Fail (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example
a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy
NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be
the automatic rounding outlined above.

