MODULE DESCRIPTION FORM | Module Information | | | | | | | | |------------------------------------|---|--------------------------------|----------------------------|---------------------|--------------|-----------|--| | Module Title | Module Title Database Systems Design Development | | | Modu | lle Delivery | | | | Module Type | | Core | | ■ Lecture | | | | | Module Code | | IT2203 | | | ■ Practical | | | | ECTS Credits | | 6 | | | | | | | SWL (hr/sem) | sem) 150 | | | | | | | | Module Level | | UG2 Semester of | | f Deliver | 1 | 2 | | | Administering De | Administering Department | | College of Science | | | | | | Module Leader | Hussein Zaki Ja | ssim Al-Mankoushi | e-mail hussein@uowa.edu.iq | | | | | | Module Leader's | Acad. Title | Asst. Lect | Module Leader's Qualif | | alification | M.Sc. | | | Module Tutor Hussein Zaki Jass | | sim Al-Mankoushi e-mail | | nussein@uowa.edu.iq | | | | | reel neviewel maille | | Asst. Prof Haider
Mohammed | e-mail hayder.algh | | lghanami@uov | va.edu.iq | | | Scientific Committee Approval Date | | 2025-01-20 | Version Number 1.0 | | | | | | Relation with other Modules | | | | | | | |---|--------------------------------|----------|---|--|--|--| | Prerequisite module Principles of database systems Semester 1 | | | | | | | | Co-requisites module | Principles of database systems | Semester | 1 | | | | ام. د سفاده مین نونل د.د. ایراد.د. **Department Head Approval** **Dean of the College Approval** | Modu | Ile Aims, Learning Outcomes and Indicative Contents | |-----------------------------|--| | Module Aims | Provide a solid understanding of database concepts, principles, and best practices. Familiarize students with the design, implementation, and management of databases. Cover topics such as data modeling, normalization, and query optimization. Develop practical skills in using database management systems and query languages. Cultivate critical thinking and problem-solving abilities in the context of database design and administration. Prepare students to apply their knowledge in real-world scenarios. Equip students to contribute to effective database solutions in the IT industry. | | Module Learning
Outcomes | Understand the fundamental concepts and principles of databases, including data models, schemas, and normalization. Demonstrate proficiency in designing, implementing, and managing databases using a database management system (DBMS). Apply data modeling techniques to develop logical and physical database designs that meet specified requirements. Construct and execute complex SQL queries to retrieve, update, and manipulate data stored in a database. Evaluate and optimize query performance through the use of indexing, query tuning, and other optimization techniques. Implement and enforce data integrity constraints, including entity relationships, referential integrity, and data validation rules. Employ appropriate security measures to protect data and ensure database confidentiality, integrity, and availability. Utilize backup and recovery procedures to safeguard data and restore databases in the event of failures or disasters. | | Indicative Contents | Indicative content includes the following. 1. Advanced Database Design: Entity-Relationship Modeling: Extensions and enhancements to ER modeling, such as subtypes, supertypes, and specialization/generalization. Object-Oriented Data Modeling: Concepts of object-oriented databases and their modeling techniques, including inheritance, encapsulation, and polymorphism. | UML Diagrams: Utilizing Unified Modeling Language (UML) to model databases, including class diagrams, object diagrams, and sequence diagrams. 2. Transaction Management and Concurrency Control: ACID Properties: Understanding the properties of atomicity, consistency, isolation, and durability in database transactions. Concurrency Control: Techniques for managing concurrent access to the database, including locking, timestamp-based protocols, and optimistic concurrency control. Recovery and Undo/Redo Logging: Mechanisms for ensuring database consistency in the face of failures, including log-based recovery and transaction rollback/commit. 3. Query Optimization and Execution: Query Processing: The stages involved in processing a database query, including parsing, optimization, and execution. Query Optimization: Techniques for selecting the most efficient query execution plan, such as cost-based optimization, join ordering, and index selection. Query Execution: Strategies for executing queries, including algorithms for sorting, joining, and aggregating data. 4. Data Storage and Indexing: File Structures: Storage structures for database files, such as heap files, sorted files, and hashed files. Indexing Techniques: Different indexing structures for efficient data retrieval, including B-trees, hash indexes, and bitmap indexes. Multi-Dimensional Data Structures: Introduction to data structures like R-trees and quad-trees for indexing spatial and multidimensional data. 5. Database Security and Authorization: Database Security: Concepts of access control, authentication, and authorization in database systems. Security Models: Different security models, such as discretionary access control (DAC), mandatory access control (MAC), and role-based access control (RBAC). Encryption and Auditing: Techniques for encrypting data and auditing database activities for security and compliance purposes. ## **Learning and Teaching Strategies** ## **Strategies** The learning and teaching strategies for studying the database subject in an IT department involve a balanced approach of theoretical understanding and practical application. Lectures, interactive discussions, and case studies provide the necessary theoretical foundation. Practical exercises, group work, and projects enable hands-on experience with database management systems. Workshops, demos, and industry examples offer real-world insights. Online resources, assessments, and feedback aid in reinforcing learning. Virtual labs and continuous learning emphasize practical skills development and staying updated with industry trends. These strategies ensure a comprehensive understanding of databases and their relevance in the IT field. | Student Workload (SWL) | | | | | | | |--------------------------|---|------------------------|---|--|--|--| | Structured SWL (h/sem) | Structured SWL (h/sem) 60 Structured SWL (h/w) 4 | | | | | | | Unstructured SWL (h/sem) | 87 | Unstructured SWL (h/w) | 6 | | | | | Total SWL (h/sem) | 147 + 3 final = 150 | | | | | | | | Module Evaluation | | | | | | | | |----------------|---|------|---------------------|-------------|-------------|--|--|--| | | Time/Nu Weight (Marks) Week Due Relevant Learning | | | | | | | | | | | mber | vveigiit (iviai ks) | Week Due | Outcome | | | | | | Quizzes | 5 | 10% (8) | 2,3,4,5,6,7 | All Outcome | | | | | | Onsite
Assignments | 5 | 10% (5) | All Weeks | All Outcome | | | | | Formative | Lab | 5 | 10% (15) | All Weeks | All Outcome | | | | | assessment | Projects | 1 | 10% (7) | All Weeks | All Outcome | | | | | | HW | 5 | 10% (5) | All Weeks | All Outcome | | | | | | Report | 1 | 10% (10) | 13 | | | | | | Summative | Midterm Exam | 2hr | 10% (10) | 7 | | | | | | assessment | Final Exam | 3hr | 50% (50) | 16 | | | | | | Total assessme | nt | | 100% (100 Marks) | | | | | | | Delivery Plan (Weekly Syllabus) | | | | | |---------------------------------|---|--|--|--| | | Material Covered | | | | | Week 1 | Week 1 Introduction to databases: concepts, importance, and applications Relational database management systems (RDBMS) | | | | | Week 2 | Week 2 Overview: Introduction to Structured Query Language (SQL) | | | | | Week 3 | Database design principles and data models | | | | | Week 4 | Entity-Relationship (ER) modeling and ER diagrams | |---------|--| | Week 5 | Database constraints: primary key, foreign key | | Week 6 | Database constraints unique, and check constraints | | Week 7 | Database administration and security: user management, permissions, and access control | | Week 8 | Backup and recovery strategies for databases | | Week 9 | Indexing and query optimization techniques | | Week 10 | Transaction management and concurrency control in databases | | Week 11 | Relational model and relational calculus | | Week 12 | Relational model and relational algebra | | Week 13 | Transaction management and concurrency control in databases | | Week 14 | Transaction management and concurrency control in databases | | Week 15 | Database performance monitoring. | | Week 16 | Preparatory week before the final Exam | | | Delivery Plan (Weekly Lab. Syllabus) | | | | | |---------|---|--|--|--|--| | | Material Covered | | | | | | Week 1 | Set up a database environment using a preferred database management system | | | | | | Week 2 | Create tables in the database based on the schema design | | | | | | Week 3 | Populate the tables with sample data to simulate real-world scenarios. Include a sufficient amount of data to perform meaningful queries. | | | | | | Week 4 | SELECT Queries: Write and execute basic SELECT queries to retrieve data from single tables. | | | | | | Week 5 | Use various clauses like WHERE, ORDER BY, and LIMIT to filter, sort, and limit the results. | | | | | | Week 6 | Practice different types of join operations | | | | | | Week 7 | NNER JOIN, LEFT JOIN, RIGHT JOIN, FULL JOIN) to combine data from multiple tables | | | | | | Week 8 | Create subqueries within SELECT statements to perform more complex queries | | | | | | Week 9 | Utilize aggregate functions (e.g., COUNT, SUM, AVG, MIN, MAX) | | | | | | Week 10 | Group data based on certain criteria using the GROUP BY clause. Apply the HAVING clause to filter the grouped data based on conditions. | | | | | | Week 11 | Practice functions like CONCAT, SUBSTRING, and LIKE | | | | | | Week 12 | Practice functions like CONCAT, SUBSTRING, and LIKE | | | | | | Week 13 | Practice writing queries with multiple levels of nested subqueries. | | | | | | Week | 14 | Practice writing queries with multiple levels of nested subqueries. | | | |------|----|--|--|--| | Week | 15 | Implementation of an integrated database management project for each student | | | | Learning and Teaching Resources | | | | | |---------------------------------|---|------------------------------|--|--| | | Text | Available in the
Library? | | | | Required Texts | Elmasri, Ramez, and Shamkant Navathe. Fundamentals of database systems. AddisonWesley Publishing Company, 2018. | Yes | | | | Recommended Texts | Database design, application and development. | No | | | | Websites | http://www.sqlcourse.com/ | , | | | | Grading Scheme | | | | | | | | |---------------------------------------|-------------------------|-------------------|----------|---------------------------------------|--|--|--| | Group Grade Mark Marks (%) Definition | | | | | | | | | | A - Excellent | Excellent | 90 - 100 | Outstanding Performance | | | | | 6 | B - Very Good | Very Good | 80 - 89 | Above average with some errors | | | | | Success Group
(50 - 100) | C - Good | Good | 70 - 79 | Sound work with notable errors | | | | | | D - Satisfactory | Fair / Average | 60 - 69 | Fair but with major shortcomings | | | | | | E - Sufficient | Pass / Acceptable | 50 - 59 | Work meets minimum criteria | | | | | Fail Group | FX – Fail | Fail (Pending) | (45-49) | More work required but credit awarded | | | | | (0 – 49) | F – Fail | Fail | (0-44) | Considerable amount of work required | | | | | | | | | | | | | **Note:** Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.